-- Model solution for Labll
-- Copyright [2000..2001] Gabriele Keller
module Lab11
where

```
foo:: [Int] -> Int
foo [] = []
foo (x:xs) = (bar xs) + (foo xs)
```

\{- DERIVATION OF
T_foo (n), (n: length of input list)
T foo (0) = 1
T_{-}foo (n) $=I_{\text {_bar }}(n-1)+T_{\text {- }}$ foo ($n-1$)

1. assume
for T_bar (n) = 2
T_foo (n) = 2 * $n+1$
It has linear work complexity, since the timing function is $O(n)$.
Proof:
For $c=3$ and all $n>n 0=2$ we have
T_foo (n) 2 * $n+1<3 * n$, therefore $T_{\text {_ foo }}$ is in $O(n)$
2. assume
for T_{-}bar $(n)=3 * n+1$

T_foo (n) = 3 * (n-1) + 1 + T_foo (n-1) $=3 n-2+T_{-}$foo ($n-1$)

T_foo (n) $=1+\operatorname{sum}(i=1)(n)(3 n-2)$
$=1-2 n+3 * \operatorname{sum}(i=1)(n) n$
$=1-2 n+3 *(n *(n+1) / 0.5)$
$=1.5 n^{\wedge} 2-0.5 n+1$
It has linear work complexity, since the timing function is $O\left(n^{\wedge} 2\right)$, According to the observations discussed in the lecture, we can omit all the constant factors and all components of the polynome but the one ith the highest exponent (2 in this case)

- \}

Ord a => [a] -> [a]
bubbleSort:: Ord a => [a] -> [a]
bubbleSort xs
| $\mathrm{xS}=\mathrm{xS}^{\prime}=\mathrm{xS}$
| otherwise = bubbleSort xs^{\prime}
where

```
xs' = bubble xs
bubble (x:y: xs)
    | x < y = x : (bubble (y:xs))
        | otherwise = y : (bubble (x:xs))
    bubble xs = xs
```

\{- DERIVATION
First, we derive the timing function for T_bubble depending on the length n of the input list

T_bubble (0) = 1
T_bubble (1) = 1
T_bubble (n) = $2+$ T_bubble ($n-1$)
$=>$ T_bubble (n) $=2 \times n+1$
T_bubblesort does not follow the same pattern as previous derivations, since bubbleSort is called recursively on a list of the same length.

T_bubbleSort $(n)=1+$ T_bubble (n), if $x S==x S^{\prime}$
1 + T_bubble (n) + T_bubblesort (n), otherwise

However, if we look more closely at bubble we can see that

1) bubble applied to a sorted list (and only to the sorted list) returns it's input list
2) every element in a list which is to the right (i.e., further back in the list) than it's proper position (i.e., the position it will have in the sorted list) will be moved at least by one index to the left with each application of bubble

This means that after at most n calls of bubble, bubble xs has to be sorted.

Therefore, we have in the best case
T_bubbleSort (n) = 1 + T_bubble (n) = 2 * $n+2$
in the worst case

T_bubbleSort (n) $=1+$ T_bubble (n) $=2 n^{\wedge} 2+n+1$

- \}

